

九模渐变型光纤

产品描述

基于模分复用的少模光纤传输系统,是利用少模光纤中有限的正交模式作为独立信道进行信息传送,以成倍的提升系统传输容量。少模光纤采用光纤中的不同模式,做为新的自由度加以利用,成功地提高了系统的频谱效率;由于少模光纤的模式具有比较大的模场面积,因此其非线性容限也很高,这样既提高了光传输系统的容量,又避免了非线性效应对系统的干扰。因此采用少模光纤中有限的、稳定的模式作为独立信道进行模式复用,可以极大提高系统容量,解决未来单模光纤的带宽危机。

长飞公司生产的九模渐变型光纤,在波长 1550nm 处模式数目为 9,有着较低的 DGD 和衰耗,符合少模光纤传输系统的需要。

产品应用

- 大容量少模光纤传输系统
- 模分复用系统
- 激光器、传感器

产品工艺

长飞光纤采用等离子体激活化学气相沉积(简称 PCVD)工艺制造。由于 PCVD 工艺的优点,长飞光纤具有折射率分布控制精确、几何特性优越和衰减低等优点。

长飞光纤采用的双层紫外固化丙烯酸酯涂层,具有优越的保护光纤的能力。这种涂层是为要求更严格的紧套光缆设计的,在松套结构里也表现出极卓越的性能,使光纤具有非常优良的抗微弯性能。在各种环境下,涂层均易于剥离,剥离后无任何残留在裸光纤上。长飞光纤具有优越和稳定的动态抗疲劳特性,极大地提高了光纤对恶劣环境的适应能力。

产品特点

- 在波长 1550nm 处模式数目为 9
- 具有较低的差分模式延时
- 各个模式均有较低的衰减
- 在小半径弯曲情况下,光纤能良好的抑制弯曲损耗
- 精确的几何参数保证低熔接损耗和高熔接效率

少模光纤

光学特性@1550nm		典型值	数据范围	单位
芯径			33 ± 0.3	μm
包层直径			125 <u>±</u> 1	μm
包层不圆度			< 0.7%	
工作波长			1450-1700	nm
涂覆层直径			245± 5	μm
色散	LP01	21.33	21~24	ps/(nm·km)
	LP11	21.39	21~24	ps/(nm·km)
	LP21	21.55	21~24	ps/(nm·km)
	LP02	21.31	21~24	ps/(nm·km)
	LP31	20.79	21~24	ps/(nm·km)
	LP12	21.05	21~24	ps/(nm·km)
	LP41	20.35	21~24	ps/(nm·km)
	LP22	22.40	21~24	ps/(nm·km)
	LP03	19.05	21~24	ps/(nm·km)
0 色散斜率	LP01	0.0989	0.08~0.11	ps/(nm²·km)
	LP11	0.0989	0.08~0.11	ps/(nm²·km)
	LP21	0.1011	0.08~0.11	ps/(nm²·km)
	LP02	0.0988	0.08~0.11	ps/(nm²·km)
	LP31	0.0966	0.08~0.11	ps/(nm²·km)
	LP12	0.0984	0.08~0.11	ps/(nm²·km)
	LP41	0.0925	0.08~0.11	ps/(nm²·km)
	LP22	0.1010	0.08~0.11	ps/(nm²·km)
	LP03	0.0883	0.08~0.11	ps/(nm²·km)
有效面积	LP01	149	110-400	μm²
	LP11	196	110-400	μm²
	LP21	240	110-400	μm²
	LP02	254	110-400	μm²
	LP31	290	110-400	μm²
	LP12	302	110-400	μm²
	LP41	331	110-400	μm²
	LP22	392	110-400	μm²

	LP03	276	110-400	μm^2
衰减系数	LP01	0.201	≤0.22	dB/km
	LP11	0.201	≤0.22	dB/km
	LP21	0.203	≤0.22	dB/km
	LP02	0.202	≤0.22	dB/km
	LP31	0.203	≤0.22	dB/km
	LP12	0.204	≤0.22	dB/km
	LP41	0.204	≤0.22	dB/km
	LP22	0.204	≤0.22	dB/km
	LP03	0.204	≤0.22	dB/km
差分模式延时	DGD	0.05	<i>−</i> 0.5~0.5	ps/m